High Spatial Resolution Laser Desorption/Ionization Mass Spectrometry Imaging of Organic Layers in an Organic Light-Emitting Diode.
|
IF: 0
|
Cited by: 2
|

Abstract

To improve the durability of organic materials in electronic devices, an analytical method that can obtain information about the molecular structure directly from specific areas on a device is desired. For this purpose, laser desorption/ionization mass spectrometry imaging (LDI-MSI) is one of the most promising methods. The high spatial resolution stigmatic LDI-MSI with MULTUM-IMG2 in the direct analysis of organic light-emitting diodes was shown to obtain a detailed mass image of organic material in the degraded area after air exposure. The mass image was observed to have a noticeably improved spatial resolution over typical X-ray photoelectron spectroscopy, generally used technique in analysis of electronic devices. A prospective m/z was successfully deduced from the high spatial resolution MSI data. Additionally, mass resolution and accuracy using a spiral-orbit TOF mass spectrometer, SpiralTOF, were also investigated. The monoisotopic mass for the main component, N,N'-di-1-naphthalenyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (m/z 588), was measured with a mass resolution of approximately 80,000 and a mass error of about 5 mDa using an external calibrant. This high mass resolution and accuracy data successfully deduced a possible elemental composition of partially remained material in the degraded area, C36H24, which was determined as anthracene, 9-[1,1'-biphenyl]-4-yl-10-(2-naphthalenyl) by combining structural information with high-energy CID data. The high spatial resolution of 1 μm in LDI-MSI along with high mass resolution and accuracy could be useful in obtaining molecular structure information directly from specific areas on a device, and is expected to contribute to the evolution of electrical device durability.

Keywords

SIMS
MALDI
TOF-SIMS
MULTUM
OLED
SpiralTOF
laser desorption/ionization mass spectrometry imaging
mass accuracy

Authors

Tachibana, Yuko
Nakajima, Yoji
Isemura, Tsuguhide
Yamamoto, Kiyoshi
Satoh, Takaya
Aoki, Jun
Toyoda, Michisato

Recommend literature