RCTD
Cited by: 71
|
Update date: 2021-02-20

Description

Spatial-eXpression-R: Cell type identification (including cell type mixtures) and cell type-specific differential expression for spatial transcriptomics Robust decomposition of cell type mixtures in spatial transcriptomics. A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .

Keywords

Spatial Transcriptomics
Slide-seq

Related


1

Robust decomposition of cell type mixtures in spatial transcriptomics.

Authors: Cable, Dylan M; Murray, Evan; Zou, Luli S; Goeva, Aleksandrina; Macosko, Evan Z; Chen, Fei; Irizarry, Rafael A
Journal: Nat Biotechnol,2022/04;40(4):517-526.
Keywords:Slide-seq; Spatial Transcriptomics
IF: 68.164
Cited by: 240

2

SpatialDWLS: accurate deconvolution of spatial transcriptomic data.

Authors: Dong, Rui; Yuan, Guo-Cheng
Journal: Genome Biol,2021/05/10;22(1):145.
Keywords:Spatial Transcriptomics; Deconvolution; Single cell; Spatial transcriptomics
IF: 17.906
Cited by: 102

3

Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.

Authors: Longo, Sophia K; Guo, Margaret G; Ji, Andrew L; Khavari, Paul A
Journal: Nat Rev Genet,2021/10;22(10):627-644.
Keywords:ISS; Spatial Transcriptomics
IF: 59.581
Cited by: 311

4

SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies.

Authors: Zhu, Jiaqiang; Sun, Shiquan; Zhou, Xiang
Journal: Genome Biol,2021/06/21;22(1):184.
Keywords:Slide-seq; Spatial Transcriptomics; HDST; Covariance test; Non-parametric modeling; SE analysis; SPARK; SPARK-X; Spatial expression pattern; Spatial transcriptomics
IF: 17.906
Cited by: 58

5

Computational challenges and opportunities in spatially resolved transcriptomic data analysis.

Authors: Atta, Lyla; Fan, Jean
Journal: Nat Commun,2021/09/06;12(1):5283.
Keywords:Spatial Transcriptomics
IF: 17.694
Cited by: 21

6

A single-cell tumor immune atlas for precision oncology.

Authors: Nieto, Paula; Elosua-Bayes, Marc; Trincado, Juan L; Marchese, Domenica; Massoni-Badosa, Ramon; Salvany, Maria; Henriques, Ana; Nieto, Juan; Aguilar-Fernández, Sergio; Mereu, Elisabetta; Moutinho, Catia; Ruiz, Sara; Lorden, Patricia; Chin, Vanessa T; Kaczorowski, Dominik; ...More
Journal: Genome Res,2021/10;31(10):1913-1926.
Keywords:Spatial Transcriptomics
IF: 9.438
Cited by: 58

7

Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain.

Authors: Grisanti Canozo, Francisco Jose; Zuo, Zhen; Martin, James F; Samee, Md Abul Hassan
Journal: Cell Syst,2022/01/19;13(1):58-70.e5.
Keywords:Spatial Transcriptomics; cellular colocalization; cellular composition; deep neural network; intercellular communication; mouse olfactory bulb; seqfish+; single-cell RNA-seq; spatial transcriptomics; tissue architecture
IF: 11.091
Cited by: 12

8

Dissecting mammalian spermatogenesis using spatial transcriptomics.

Authors: Chen, Haiqi; Murray, Evan; Sinha, Anubhav; Laumas, Anisha; Li, Jilong; Lesman, Daniel; Nie, Xichen; Hotaling, Jim; Guo, Jingtao; Cairns, Bradley R; Macosko, Evan Z; Cheng, C Yan; Chen, Fei
Journal: Cell Rep,2021/11/02;37(5):109915.
Keywords:Slide-seq; Spatial Transcriptomics
IF: 9.995
Cited by: 41

9

Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer.

Authors: Meylan, Maxime; Petitprez, Florent; Becht, Etienne; Bougoüin, Antoine; Pupier, Guilhem; Calvez, Anne; Giglioli, Ilenia; Verkarre, Virginie; Lacroix, Guillaume; Verneau, Johanna; Sun, Chen-Ming; Laurent-Puig, Pierre; Vano, Yann-Alexandre; Elaïdi, Reza; Méjean, Arnaud; ...More
Journal: Immunity,2022/2/24;
Keywords:Spatial Transcriptomics; B cell maturation; B cell repertoire; Visium; anti-tumor IgG; fibroblasts; plasma cells; renal cell cancer; response to immune check point inhibition; spatial transcriptomics; tertiary lymphoid structures; tumor microenvironment
IF: 43.474
Cited by: 142

10

A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.

Authors: Chen, Jiawen; Liu, Weifang; Luo, Tianyou; Yu, Zhentao; Jiang, Minzhi; Wen, Jia; Gupta, Gaorav P; Giusti, Paola; Zhu, Hongtu; Yang, Yuchen; Li, Yun
Journal: Brief Bioinform,2022/07/18;23(4)
Keywords:Spatial Transcriptomics; cell-type deconvolution; deep learning; probabilistic modeling; single-cell; spatial transcriptomics
IF: 13.994
Cited by: 11

Tool types

Spatially Variable Genes
Cell Composition
Spatial Patterns

Languages

HTML
R