Modified whole-mount in situ hybridisation and immunohistochemistry protocols without removal of the vitelline membrane in the appendicularian Oikopleura dioica.
IF: 2.116
Cited by: 8


The appendicularian Oikopleura dioica is a planktonic chordate that retains a tadpole shape throughout its life. Its simple and transparent body, invariant cell lineages, fast development and available genome and transcriptome resources make it a promising model organism for research in developmental biology. However, large-scale analysis of gene expression in O. dioica is limited owing to the laborious and time-consuming process of manual removal of the vitelline membrane, because devitellinisation of pre-hatching embryos causes failure of normal development. Therefore, in this study, modified procedures were developed for whole-mount in situ hybridisation (WISH) and immunohistochemistry (WIHC). This protocol enables rapid mRNA or protein detection without a manual devitellination step for each specimen. The critical procedure is brief treatment of the vitelline membrane of living embryos with 0.05% actinase E before fixation. Two minutes of treatment was optimal for the penetration of antisense RNA probes and antibodies through the vitelline membrane. This WISH protocol was applicable for chromogenic and fluorescent tyramide signal amplification reactions. Using the new protocol, we found eight genes with tissue-specific expression in the tail muscle, trunk epidermis, heart, pharynx, oesophagus, stomach or gill openings of developing larvae. This procedure also allowed for the detection of exogenous FLAG-tagged histone-enhanced green fluorescent protein by WIHC using anti-FLAG antibody. This study provides a useful and convenient tool for studying spatial and temporal gene expression patterns in this simple chordate model and should facilitate handling large amounts of genetic data from transcriptome-based approaches and other techniques such as treatments with chemical inhibitors.


In situ hybridisation

MeSH terms

Cell Lineage
Embryo, Nonmammalian
Gene Expression Regulation, Developmental
Green Fluorescent Proteins
In Situ Hybridization
Organ Specificity
Vitelline Membrane


Onuma, Takeshi A
Matsuo, Masaki
Nishida, Hiroki

Recommend literature

Similar data