A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.
IF: 2.586
Cited by: 24


An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS techniques. Initial results on the mycotoxin deoxynivalenol (DON) in wheat seed and phospholipids in mouse brain as a model for mammalian tissue indicate a broad applicability of the presented workflow.



MeSH terms

Amino Acids
Brain Chemistry
Chromatography, High Pressure Liquid
Spectrometry, Mass, Electrospray Ionization
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization


Berisha, Arton
Dold, Sebastian
Guenther, Sabine
Desbenoit, Nicolas
Takats, Zoltan
Spengler, Bernhard
Römpp, Andreas

Recommend literature