Gene structure and spatio-temporal expression of chicken LPIN2.
|
IF: 2.742
|
Cited by: 2
|

Abstract

LPIN2 is one of the members of the Lipin family, which acts as a phosphatidate phosphatase enzyme. In this study, we identified the cDNA sequence and exonic variants of chicken LPIN2, and evaluated its spatio-temporal expression patterns. It indicated that chicken LPIN2 cDNA contained a 2,664-bp open reading frame flanked by a 176-bp 5' untranslated region and a 429-bp 3' untranslated region, predicted encoding one protein of 886 amino acids. Fourteen variants (three missense mutations) were detected from the coding region of chicken LPIN2. W265L was predicted to affect the gene function (p < 0.01) and eight synonymous mutations were predicted to affect the binding sites of SR proteins, which suggested the important functions of these variants. Real-time quantitative PCR revealed that LPIN2 in two genotypic chickens (LD and HB chickens, with difference in growth rate) presented similar tissue expression patterns, which was liver and ovary enriched with low abundance in skeleton muscles. Chicken LPIN2 exhibited tissue-specific temporal-expression patterns during postnatal development (0-16 weeks). Chicken cutaneous LPIN2 was in steady-state mRNA levels during postnatal development; chicken LPIN2 mRNA in pectoralis major had a prominent level at 0 week-old, then dropped dramatically at 4 week-old and maintained a relatively low level through 4-16 weeks; while chicken hepatic LPIN2 had a relatively high expression at 0 week-old, with a relatively low level through 4-12 weeks and a slight increase at 16 week-old. The studies about the basic gene features of chicken LPIN2 would lay the foundation for further exploring its biological function.

MeSH terms

Amino Acid Sequence
Animals
Binding Sites
Chickens
Cloning, Molecular
DNA, Complementary
Female
Gene Expression Profiling
Gene Expression Regulation, Developmental
Open Reading Frames
Phenotype
Phosphatidate Phosphatase
Tissue Distribution

Authors

Zhang, Caixia
Wang, Runzhi
Chen, Wen
Kang, Xiangtao
Huang, Yanqun
Walker, Richard
Mo, Juan

Recommend literature