An analysis of a 'community-driven' reconstruction of the human metabolic network.
IF: 4.747
Cited by: 29


Following a strategy similar to that used in baker's yeast (Herrgård et al. Nat Biotechnol 26:1155-1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonellatyphimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419-425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved 'community consensus' reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at and in SBML format at Biomodels ( This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.


Metabolic networks
Systems biology


Swainston, Neil
Mendes, Pedro
Kell, Douglas B

Recommend literature