p38 MAP kinase signaling is necessary for rat chondrosarcoma cell proliferation.
Oncogene, 2004/4/29;23(20):3726-31.
Halawani D[1], Mondeh R, Stanton LA, Beier F
Affiliations
PMID: 15116104
Impact factor: 8.756
Abstract
Chondrosarcomas represent the second most frequent class of primary skeletal malignancies. This tumor type is highly resistant to radiation therapy and currently available chemotherapies, thereby limiting treatment choice to surgical resection. Identifying the mechanisms responsible for chondrosarcoma cell proliferation is therefore crucial for the development of new treatment strategies. Here, we demonstrate a significant reduction in rat chondrosarcoma cell proliferation following treatment with pharmacological inhibitors (SB202190 and PD169316) of p38 mitogen-activated protein (MAP) kinases. In an attempt to dissect possible mechanisms, we investigated the effect of p38 inhibition on promoter activity of cell-cycle genes. Surprisingly, p38 inhibition resulted in upregulation of the activities of all three D-type cyclin promoters. In addition, p38 inhibitors induced increased transcription of the cell-cycle inhibitor p21(waf1/cip1). As expected, promoter activity of the cyclin A gene, which lies downstream of D-type cyclins and p21 in cell-cycle progression, was strongly reduced by p38 inhibitors. These effects were independent of a cyclic AMP response element and conferred by the proximal 150 nucleotides of the cyclin A promoter. Decreased transcription was accompanied by greatly reduced cyclin A protein levels upon p38 inhibition. These observations indicate complex regulation of chondrosarcoma cell-cycle progression by p38 signaling, and suggest that components of p38 MAP kinase pathways may be effective targets in the treatment of these tumors.
MeSH terms
Animals; Cell Division; Chondrosarcoma; Mitogen-Activated Protein Kinases; Rats; Signal Transduction; p38 Mitogen-Activated Protein Kinases
More resources
EndNote: Download