Codeplot
pca
Introduction

this workflow normalize counts per cell and ogarithmize the data matrix by scanpy.pp.normalize_total and scanpy.pp.log1p

Script
Input
Task nameAttribute nameTypeDescription
* main project_nameString project name
* main anndataFile Input object format:anndata
* main.pca zero_centerBoolean If True, compute standard PCA from covariance matrix. If False, omit zero-centering variables (uses TruncatedSVD), which allows to handle sparse input efficiently. Passing None decides automatically based on sparseness of the data.
* main.pca use_highly_variableBoolean Whether to use highly variable genes only, stored in .var['highly_variable']. By default uses them if they have been determined beforehand.
* main.pca svd_solverString method of SVD solver to use
* main.pca n_compsInt Number of principal components to compute. Defaults to 50, or 1 - minimum dimension size of selected representation.
* main.pca memoryString Number of memory running tasksnotice:1. The value range is 0.25-32 cores, in addition, 48 cores and 64 cores can be selected, and the CPU must be an integer multiple of 0.25 cores; 2. The memory value range is 1GB-512GB, and the memory must be an integer multiple of 1GB. 3. The CPU / memory ratio must be between 1:2 and 1:8
* main.pca dockerString --
* main.pca cpuString Number of CPU running tasks.notice:1. The value range is 0.25-32 cores, in addition, 48 cores and 64 cores can be selected, and the CPU must be an integer multiple of 0.25 cores; 2. The memory value range is 1GB-512GB, and the memory must be an integer multiple of 1GB. 3. The CPU / memory ratio must be between 1:2 and 1:8
Output
Task nameAttribute nameTypeDescription
* main pngfileArray[File] Return the output file to the column name of the corresponding table by this.xxx
* main h5adfileFile Return the output file to the column name of the corresponding table by this.xxx