UpSetR 高级参数使用教程

2019-11-18 346动手实验室R语言

在《UpSetR:多数据集绘图可视化处理利器》中我们介绍了 UpSetR 的一些概念和绘图基础参数使用,今天我们来学习一下 UpSetR 的 queries 和 attribute.plots 这两个高级参数的使用。

queries 参数

queries 参数里面的每一个 list 都是由四个部分组成:query, param, color, active。

  1. query:查询函数,可以用系统自带的,也可以自己写。
  2. param:参数,查询函数(query)作用于哪些数据集,是一个 list。
  3. color:每个 query 在绘图中的颜色,没设置的话将调用 UpSetR 默认的调色板。
  4. active:决定 query 将如何表示在图上。TRUE,intersection size 条形图将会被 query 中的条形图覆盖;FALSE,intersection size 条形图将会被加上一个三角形(a jitter point),这个三角形的位置是波动性的。

示例1:内置的交集查询

本示例展示了如何通过内置的交集查询(intersection query)intersects 去查找并展示特定的交集元素(elements in specific intersections)。本示例中 active query 的颜色来源于 UpSetR 中默认的调色板。

pset(movies, queries = list(list(query = intersects, params = list("Drama", "Comedy", "Action"), color = "orange", active = T),   
list(query = intersects, params = list("Drama"), color = "red", active = F),
list(query = intersects, params = list("Action", "Drama"), active = T)))

UpSetR_1

  1. Drama, Comedy, Action 的交集(10)已经变成了橘色(color="orange"),上方的 Intersection Size 条形图已经被橘色的条形图覆盖(active=T);
  2. Action, Drama 的交集(68)也变成了默认的蓝色。
  3. Drama 的圆点变成了红色(color="red"),上方的 Intersection Size 条形图顶部被一个红色的三角形覆盖(active=F)。

示例2:内置的元素查询

本示例展示了如何通过内置的元素查询(element query)函数 elements 可视化展示特定的元素在交集中是如何分布的。

upset(movies, queries = list(list(query = elements, params = list("AvgRating", 3.5, 4.1), color = "blue", active = T),   
list(query = elements, params = list("ReleaseDate", 1980, 1990, 2000), color = "red", active = F)))

UpSetR_2

  1. 蓝色的条形图表示,默认的 6 个数据集中符合 AvgRating == 3.5 或者 AvgRating == 4.1 在各个集合中的个数分布。
  2. 红色三角形表示,6 个数据集中符合 ReleaseDate==1980, 1990, 2000 在各个集合中的分布,它们的位置存在波动性(active = F)。

示例3:使用表达参数进行交集和元素子集查询

本示例展示如何通过使用 expression 参数获取交集和元素查询的子集(subset the results of element and intersection queries)。

upset(movies, queries = list(list(query = intersects, params = list("Action", "Drama"), active = T),   
list(query = elements, params = list("ReleaseDate", 1980, 1990, 2000), color = "red", active = F)),   
expression = "AvgRating > 3 & Watches > 100")

UpSetR_3

示例4:自定义查询

Creating a custom query to operate on the rows of the data.Myfunc <- function(row, release, rating) {    data <- (row["ReleaseDate"] %in% release) & (row["AvgRating"] > rating)}

Applying the created query to the queries parameter.upset(movies, queries = list(list(query = Myfunc, params = list(c(1970, 1980, 1990, 1999, 2000), 2.5), color = "blue", active = T)))

UpSetR_4

示例5:使用查询图例

UpSetR 可以通过使用 query.legend 添加 queries 的图例。query.legend 的位置可以在头部(top)或者底部(bottom);我们也可以使用 query.name 参数在 queries 中给每一个 query 自定义指定的名称。

upset(movies, query.legend = "top", queries = list(list(query = intersects,   
params = list("Drama", "Comedy", "Action"), color = "orange", active = T,  
query.name = "Funny action"), list(query = intersects, params = list("Drama"),    color = "red", active = F), list(query = intersects, params = list("Action",    "Drama"), active = T, query.name = "Emotional action")))

UpSetR_5

示例6:queries 绘图总结

综合示例1——示例5,绘制图形如下:

pset(movies, query.legend = "bottom", queries = list(list(query = Myfunc, params = list(c(1970,    1980, 1990, 1999, 2000), 2.5), color = "orange", active = T), list(query = intersects,    params = list("Action", "Drama"), active = F), list(query = elements, params = list("ReleaseDate",    1980, 1990, 2000), color = "red", active = F, query.name = "Decades")),    expression = "AvgRating > 3 & Watches > 100")

UpSetR_6

attribute.plots 参数

attribute.plots 主要是用于添加属性图,内置有柱形图、散点图、热图等。该参数被分解成 3 部分:gridrows, plots, 以及 ncols。

  1. gridrows:用于指定扩展绘图窗口以增加属性图的空间。UpSetR 默认是在 100 x 100 的网格上进行绘图的,因此如果我们将网格(gridrows)设置为 50,则新的网格布局将变成 150 x 100,为属性图留出 1/3 的网格空间。
  2. plots:接收一个参数列表,这些参数包括 plot, x, y(如果适用的话),以及 queries。
  3. plot:一个返回 ggplot 的函数。
  4. x:ggplot 图形中的 x 轴标题(string)。
  5. y:ggplot 图形中的 y 轴标题(string)。
  6. queries:指示是否将当前的 queries 与绘图重叠。如果 queries 为 TRUE,属性图(attribute plot)将会被来源于查询(queries)的数据覆盖;否则,查询结果将不会绘制在属性图上。
  7. ncols:指示如何在 gridrows 空间中绘制图形。如果输入了 2 个属性图(attribute plots)且 ncols=1,属性图将会纵向一个个排列;如果输入了 2 个属性图(attribute plots)且 ncols=2,属性图将并排显示。

示例1:直方图

本示例展示了如何在 UpSetR 中添加一个内置直方属性图。如果 main.bar.color 未指定为黑色,则包含在黑色 intersection size 柱状条中的元素将在属性图中表示为灰色。

upset(movies, main.bar.color = "black", queries = list(list(query = intersects,    params = list("Drama"), active = T)), attribute.plots = list(gridrows = 50,    plots = list(list(plot = histogram, x = "ReleaseDate", queries = F), list(plot = histogram,        x = "AvgRating", queries = T)), ncols = 2))

UpSetR_7

示例2:散点图

本示例展示了如何在 UpSetR 中添加一个内置散点属性图。需要注意的是,在本示例中使用了 query.legend。

upset(movies, main.bar.color = "black", queries = list(list(query = intersects, params = list("Drama"), color = "red", active = F),    list(query = intersects, params = list("Action", "Drama"), active = T),    list(query = intersects, params = list("Drama", "Comedy", "Action"), color = "orange", active = T)),    attribute.plots = list(gridrows = 45, plots = list(list(plot = scatter_plot, x = "ReleaseDate", y = "AvgRating", queries = T),        list(plot = scatter_plot, x = "AvgRating", y = "Watches", queries = F)), ncols = 2),    query.legend = "bottom")

UpSetR_8

示例3:自定义属性图

myplot <- function(mydata, x, y) {    plot <- (ggplot(data = mydata, aes_string(x = x, y = y, colour = "color")) +        geom_point() + scale_color_identity() + theme(plot.margin = unit(c(0,        0, 0, 0), "cm")))}another.plot <- function(data, x, y) {    data$decades <- round_any(as.integer(unlist(data[y])), 10, ceiling)    data <- data[which(data$decades >= 1970), ]    myplot <- (ggplot(data, aes_string(x = x)) + geom_density(aes(fill = factor(decades)),        alpha = 0.4) + theme(plot.margin = unit(c(0, 0, 0, 0), "cm"), legend.key.size = unit(0.4,        "cm")))}

使用上面定义的 myplot 应用于 UpSetR 绘图。

upset(movies, main.bar.color = "black", queries = list(list(query = intersects,    params = list("Drama"), color = "red", active = F), list(query = intersects,    params = list("Action", "Drama"), active = T), list(query = intersects,    params = list("Drama", "Comedy", "Action"), color = "orange", active = T)),    attribute.plots = list(gridrows = 45, plots = list(list(plot = myplot, x = "ReleaseDate",        y = "AvgRating", queries = T), list(plot = another.plot, x = "AvgRating",        y = "ReleaseDate", queries = F)), ncols = 2))

UpSetR_9

示例4:属性图绘图总结

综合示例 1 的内置直方图、示例 2 的内置散点图,以及示例 3 的自定义属性图,绘图如下:

pset(movies, main.bar.color = "black", mb.ratio = c(0.5, 0.5), queries = list(list(query = intersects,    params = list("Drama"), color = "red", active = F), list(query = intersects,    params = list("Action", "Drama"), active = T), list(query = intersects,    params = list("Drama", "Comedy", "Action"), color = "orange", active = T)),    attribute.plots = list(gridrows = 50, plots = list(list(plot = histogram,        x = "ReleaseDate", queries = F), list(plot = scatter_plot, x = "ReleaseDate",        y = "AvgRating", queries = T), list(plot = myplot, x = "AvgRating",        y = "Watches", queries = F)), ncols = 3))

UpSetR_10

示例5:箱线图

箱线图(Box plots)可以展示所有交集的点属性分布,交集箱线图可以一次性最多展示 2 个箱线图的总体情况。boxplot.summary 参数接收包含 1 个或者 2 个属性名称的向量数据(vector)。

upset(movies, boxplot.summary = c("AvgRating", "ReleaseDate"))

UpSetR_11

关于 UpSetR 包的使用就介绍到这里,该包的其他一些用法,如 Incorporating Set Metadata 可以参考官方文档,或者查看 UpSetR 在 GitHub 的源码。

▍本文版权(图片和文字)属于“生信科技爱好者”(微信公众号:BioInit),禁止二次转载。部分图片来源于网络,如有侵权请联系删除。

上一篇下一篇