Mapping Transcriptomic Vector Field of Single Cells
Source: NCBI BioProject (ID PRJNA796521)

0 0

Project name: Mapping Transcriptomic Vector Field of Single Cells
Description: Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo, which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo’s power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.Overall design: This study contains three main experiments. The first two are about 10x scRNA-seq experiment and sequential lineage tracing of HL60 cell differentiation with static barcode and scSLAM-seq, respectively. The third one is about profiling human hematopoiesis in vitro with scNT-seq.
Data type: Other
Sample scope: Multiisolate
Relevance: Medical
Organization: Whitehead Institute
Last updated: 2022-01-12
Statistics: 1757 samples; 1757 experiments; 1757 runs