Genome-wide mapping of early replication fragile sites (ERFS)
Source: NCBI BioProject (ID PRJNA186619)

0 0

Project name: Mus musculus
Description: DNA double strand breaks (DSBs) in B lymphocytes are thought to arise stochastically during replication (S phase) or as a result of targeted DNA damage by activation induced cytidine deaminase (AID) in G1. Here we identify a novel class of recurrent, early replicating and AID independent DNA lesions, termed early replication fragile sites (ERFS), by genome-wide localization of DNA repair proteins DNA double strand breaks (DSBs) in B lymphocytes are thought to arise stochastically during replication (S phase) or as a result of targeted DNA damage by activation induced cytidine deaminase (AID) in G1. Here we identify a novel class of recurrent, early replicating and AID independent DNA lesions, termed early replication fragile sites (ERFS), by genome-wide localization of DNA repair proteins DNA double strand breaks (DSBs) in B lymphocytes are thought to arise stochastically during replication (S phase) or as a result of targeted DNA damage by activation induced cytidine deaminase (AID) in G1. Here we identify a novel class of recurrent, early replicating and AID independent DNA lesions, termed early replication fragile sites (ERFS), by genome-wide localization of DNA repair proteins RPA, SMC5, gamma-H2AX, and BRCA1 in B cells subjected to replication stress.Overall design: Protein-DNA association for four DNA damage response proteins (RPA, SMC5, g-H2AX, BRCA1), BrdU incorporation, and gene transcription in B lymphocytes with and without hydroxyurea treatment were examined.
Data type: Other
Sample scope: Multiisolate
Relevance: ModelOrganism
Organization: Faryabi Lab, Pathology, University of Pennsylvania
Literatures
  1. PMID: 23352430
Last updated: 2013-01-15
Statistics: 24 samples; 24 experiments; 24 runs