The spring-loaded genome: nucleosome redistributions are widespread, transient, and DNA-directed.
Genome Res, 2014/2;24(2):251-9.
Sexton BS[1], Avey D, Druliner BR, Fincher JA, Vera DL, Grau DJ, Borowsky ML, Gupta S, Girimurugan SB, Chicken E, Zhang J, Noble WS, Zhu F, Kingston RE, Dennis JH
Affiliations
PMID: 24310001DOI: 10.1101/gr.160150.113
Impact factor: 9.438
Abstract
Nucleosome occupancy plays a key role in regulating access to eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 h post-KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro-assembled nucleosomes. We demonstrate that both the predicted model and the assembled nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 h post-KSHV reactivation. We suggest a model in which loci are held in an unfavorable chromatin architecture and "spring" to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.
MeSH terms
Chromatin; Computer Simulation; Genome, Human; Herpesvirus 8, Human; Humans; Models, Genetic; Nucleosomes; Sequence Analysis, DNA; Virus Activation
More resources
Full text:
Europe PubMed Central; PubMed Central
EndNote: Download