Single-cell Atlas of common variable immunodeficiency shows germinal center-associated epigenetic dysregulation in B-cell responses

Basic information
Technology
10X Genomics
Smart-Seq2
Omics
scRNA-seq,scATAC-seq,CITE-seq
Source
PBMCs

Dataset ID
35365635
Platform
Illumina HiSeq 2000,HiSeq 4000
Species
Human
Disease
CVID,Healthy
Age range
19 - 66
Update date
2022-04-01
Summary

Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring defective cell-cell communication upon activation. These findings are validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and indicate links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, gives insight into future diagnosis and treatments of CVID patients.

Overall design

Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency. Here the authors perform single cell omics analyses in CVID discordant monozygotic twins and show epigenetic and transcriptional alterations associated with activation in memory B cells.

Contributors

To be supplemented.

Contact

To be supplemented.

snRNA-Seq
Sample nameSample titleDiseaseGenderAgeSourceTreatmentTechnologyPlatformOmicsSample IDDataset IDAction
No data available