Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis

Basic information
Cell
1,334
Sample
16

Technology
To be supplemented.
Omics
scRNA-seq
Source
PBMCs

Dataset ID
33170805
Platform
Illumina HiSeq 2000
Species
Human
Disease
Multiple sclerosis (MS),Healthy
Age range
23 - 64
Update date
2020-11-10
Summary

FOXP3+ Tregs rely on fatty acid β-oxidation-driven (FAO-driven) oxidative phosphorylation (OXPHOS) for differentiation and function. Recent data demonstrate a role for Tregs in the maintenance of tissue homeostasis, with tissue-resident Tregs possessing tissue-specific transcriptomes. However, specific signals that establish tissue-resident Treg programs remain largely unknown. Tregs metabolically rely on FAO, and considering the lipid-rich environments of tissues, we hypothesized that environmental lipids drive Treg homeostasis. First, using human adipose tissue to model tissue residency, we identified oleic acid as the most prevalent free fatty acid. Mechanistically, oleic acid amplified Treg FAO-driven OXPHOS metabolism, creating a positive feedback mechanism that increased the expression of FOXP3 and phosphorylation of STAT5, which enhanced Treg-suppressive function. Comparing the transcriptomic program induced by oleic acid with proinflammatory arachidonic acid, we found that Tregs sorted from peripheral blood and adipose tissue of healthy donors transcriptomically resembled the Tregs treated in vitro with oleic acid, whereas Tregs from patients with multiple sclerosis (MS) more closely resembled an arachidonic acid transcriptomic profile. Finally, we found that oleic acid concentrations were reduced in patients with MS and that exposure of MS Tregs to oleic acid restored defects in their suppressive function. These data demonstrate the importance of fatty acids in regulating tissue inflammatory signals.

Overall design

overall_design too long too uplode

Contributors

Saige L. Pompura†, Margarita Dominguez-Villar✉️, David A. Hafler✉️

Contact

To be supplemented.

snRNA-Seq
Sample nameSample titleDiseaseGenderAgeSourceTreatmentTechnologyPlatformOmicsSample IDDataset IDAction
No data available